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Driving comfort and performance is of vital importance to evaluate the control quality of
an automatic driving system. The control quality and calibration of the automatic driving
system not only affects comfort but also psychological load and tension. Therefore, this
paper proposed an analysis method of driving comfort combined with subjective and objec-
tive factors, including multidimensional analysis based on the velocity domain, acceleration
energy and power analysis, perceived risk and deviation analysis. Moreover, the feature of
typical uncomfortable manoeuvres is analysed and generates an intelligent identification al-
gorithm. It has been found that the uncomfortable identification performance is excellent
(the accuracy reached 99%).
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1. Introduction

With the maturity of automatic driving technology and mass production, the driving comfort has
become the key to evaluate the control quality of the system. It affects the physiological comfort
and psychological load of drivers and passengers during automatic driving. Therefore, more
and more researches are carried out on comfort and calibration of automatic driving systems,
and test works have also become necessary. Burkhard et al. (2018) considered that passenger
movements caused by accelerations of the body were essential pre-requisite for the ride comfort
of autonomous vehicles. Wang et al. (2019) developed a comfort level model of autonomous
vehicles through data acquisition and structure modeling and used an automatic scoring tool to
guide technological development, optimize algorithms and improve strategies. Yusof et al. (2016)
carried out research on the relationship between different driving styles (assertive and defensive)
and comfort. They improved the comfort performance through the study of driving behavior of
an autonomous vehicle.

Most of the evaluation methods are based on qualitative analysis, and the quantitative
analysis does not extract and decompose the features of uncomfortable conditions to study its
typical characteristics. In addition, there are few studies on multi-domain quantitative analy-
sis of vehicle-following scenarios and there is a lack of the research on typical uncomfortable
manoeuvres perceived by human.

Therefore, this paper proposes quantitative analyses based on the time and velocity domain
combined with subjective empirical data from automobile enterprises. In addition, the feature
formula of uncomfortable manoeuvres in the test is established, and the intelligent identification
network of these manoeuvres is trained by a neural network algorithm. In general, the tradi-
tional driving comfort evaluation depends on the subjective feelings of the evaluators, and there
are certain individual differences and unreliability. The methodology and algorithm proposed
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in this paper avoid human factors by forming a consistent evaluation standard and show the
system calibration characteristics through quantitative distribution. Especially for uncomfort-
able working conditions, the amplitude change and variable correlation can be analyzed by data
figures, which is significant for the calibration tendency and control characteristics of the system
under the test. At the same time, the trained identification network can effectively extract the
uncomfortable manoeuvres from the test data automatically.

2. Analysis and evaluation method

The uncomfortable working condition is mainly caused by acceleration value and variation char-
acteristics during driving, especially in the direction of driving for automatic driving vehicles.
Therefore, the analysis of acceleration and the characteristics of uncomfortable manoeuvres are
the key points. To generate a scientific and quantitative method, the analysis architecture and
flow based on the time domain and velocity domain are established.

Test data reconstruction and statistical calculation were used for acceleration analysis. The
uncomfortable manoeuvres output analysis is evaluated by acceleration energy and power. The
risk perception analysis is calculated by a weighting function, the empirical thresholds are in-
troduced for the deviation dynamic analysis. As shown in Fig. 1a, the test data is filtered and
transformed in the velocity domain, then carry out the analysis of acceleration multidimensional
distribution, energy and power, perceived risk and comfort.

Moreover, based on the analysis of uncomfortable manoeuvres data, an artificial intelligence
algorithm is introduced to generate the feature network for automatic identification of such
manoeuvres. A two-layer neural net is constructed for training based on the feature data of
typical uncomfortable manoeuvres. The architecture and flow are shown in Fig. 1b which includes
test data preprocessing, feature extraction, network design and training, the result test and
validation.

Fig. 1. Analysis and evaluation logical architecture
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3. Test and filtering processing

3.1. Test scenario

In order to simulate typical urban traffic conditions, a periodic acceleration and deceleration
vehicle-following scenario is used to perform the test. Through the manoeuvre design of the
leading vehicle to guide the host vehicle (automatic driving vehicle under test), the control
strategy and manoeuvre response is indirectly analyze. The test scenario is shown in Fig. 2, the
parameter setting of the leading vehicle is shown in Table 1 (Didier and Landau, 2005; Tang et
al., 2017).

Fig. 2. Longitudinal velocity of the interactive vehicle

Table 1. Interactive vehicle parameter setting

Velocity range 40-60 km/h

Cycle period 8 s

Experiment distance 1400m

Road type long straight road

Route plan straight line

Initial velocity 0 km

3.2. Test data preprocessing

3.2.1. Filtering algorithm

Due to the interference of test facility noise and vibration of the fixed mechanism, the original
signal needs denoising and smoothing for subsequent analysis. The discomfort and motion sick-
ness of the automatic driving vehicle in the driving direction is mainly affected by low-frequency
acceleration. For this reason, it is necessary to reject the interference of high-frequency noise. In
signal processing, the wavelet transform has the advantage of noise reduction and protects the
spike and transient signals (Hazarika et al., 1997). Therefore, this method is used to process the
original acceleration data through the test.
The discrete wavelet function is shown in Eq. (3.1), where Ψ(t) denotes the integral wavelet,

t denotes time, a denotes the scale and b denotes the offset, j denotes the scaling of the wavelet
function in the frequency domain and k denotes translation of the function in the time domain

Ψj,k(t) = a
−j/2
0 Ψ(a−j0 t− kb0) j, k ∈ Z (3.1)

The discrete wavelet transform coefficients W is

Wj,k(t) =

∞
∫

−x

f(t)Ψj,k(t)
∗ dt (3.2)
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The coefficient reconstruction formula of the discrete wavelet transform is shown in Eq. (3.3),
C denotes a constant independent of the signal (Rioul and Vetterli, 1991)

f(t) = C
∞
∑

−∞

∞
∑

−∞

Wj,kΨj,k(t) (3.3)

3.2.2. Calculation

In this paper, the daubechies (dbN) wavelet is selected in calculation, N (db number) is
the number of vanishing moments. Basically, the higher the number of vanishing moments,
the smoother the wavelet. The level is the number of decomposition layers. The more layers,
the more high-frequency components filtered, but the greater the difference between the low-
-frequency results and the original signal (Guan et al., 2015). In the paper, we set N = 4 and
decomposition level to 4. The calculation result shown in Fig. 3a is a wavelet tree. Figure 3b
shows the test raw data collected by test facility, Fig. 3c the processed data. It can be seen from
the curve of processed data that the high-frequency clutter is eliminated, and the data curve is
smoother, which is a conducive feature in the analysis (Cai et al., 2003).

Fig. 3. Decomposition at 4 levels: (a) wavelet tree, (b) signal, (c) approximation at level 4
(reconstructed)

4. Comfort analysis based on the velocity and time domain

4.1. Acceleration proportion analysis

The analysis based on the velocity domain is significant for a vehicle-following scenario
because the control response of the host vehicle is different at different velocity. Under the
vehicle-following scenario, the acceleration distribution and proportion in the velocity domain
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can comprehensively present the automatic driving performance of the host vehicle. The calcu-
lation is shown in Eq. (4.1), nc denotes the number of sampling points under the corresponding
condition, ntotal denotes the total number of sampling points

f(v, a) =
nc|condition

ntotal
condition :

{

v(i) ∈ (i, i + ev] for i ∈ [1, nv ]

a(j) ∈ (j, j + ea] for j ∈ [1, na]
(4.1)

The calculation result is shown in Fig. 4, x-axis and y-axis represent velocity and acceleration
respectively, z-axis represents the proportion under the current acceleration and velocity values
in this scenario. The figure can be used to evaluate the comfort performance of the system
at different following velocities. The characteristics of good control performance are a small
proportion of high acceleration and distribution characteristics of a low acceleration area at
high velocity. The figure shows that the higher acceleration is relatively concentrated between
30-60 km/h and accounts for a large proportion in the low value area (0-1.5m/s2). The maximum
measured acceleration (2.5-3.5 m/s2) occurs in the range of 40-60 km/h, in which there are the
aggressive braking manoeuvres when the leading vehicle suddenly decelerates according to the
test process.

Fig. 4. Acceleration-velocity-proportion map

4.2. Acceleration energy map and power analysis

Acceleration energy can quantify the cumulative output of acceleration in different velocity
ranges. In addition, it reflects the degree of discomfort input by vehicle to drivers and passengers,
the calculation result is shown in Eq. (4.2). In each range of the velocity, ai(v) denotes the
acceleration value per sample, m denotes the sample number, E(i) denotes the energy. Figure 5a
shows that high energy areas are distributed around 10, 30 and 60 km/h

E(i) =
m
∑

1

a2i (v) ai ∈ (0,max(ai)) (4.2)

The acceleration power represents the discomfort intensity in each velocity range. The cal-
culation results of acceleration power are presented as Eq. (4.3), where P (i) is the power of the
current unit velocity. Figure 5b shows that the high-power work condition is concentrated below
10 km/h. Based on human’s psychological hint between velocity and risk, high-energy accelera-
tion in the high-velocity scenario will bring more tension and be uncomfortable to drivers and
passengers than in the low-velocity scenario. Therefore, the energy and power output perfor-
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mance in the high-velocity range is well-controlled, and the uncomfortable manoeuvres tend to
the low-velocity range (Kusmirek et al., 2016; Zhao et al., 2013; Rihaczek, 1968)

P (i) =
1

m

m
∑

1

a2i (v) ai ∈ (0,max(ai)) (4.3)

Fig. 5. Acceleration energy (a) and power (b)

4.3. Perceived risk index and comfort deviation analysis

Drivers and passengers have a positive psychological mapping relationship between velocity
and risk. The faster the velocity, the greater perceived risk and tension. In addition, large
acceleration fluctuation at high velocity will increase the driver’s psychological load. Therefore,
a good dynamic control strategy is to minimize the aggressive control under the high-velocity
condition. Then, the calculation method of the perceived risk index Pn(t) is proposed, as shown in
Eq. (4.4)1, which is calculated by multiplying the acceleration a(t) and velocity coefficient vn(t).
vn(t) is the normalization of velocity (in the velocity range of 0-120 km/h), the calculation is
shown in Eq. (4.4)2. The result in the time domain is shown in Fig. 6a. Obviously, the index
value is relatively high in the three scenarios with high-velocity aggressive braking, at 36 s, 62 s
and 86 s, respectively

pn(t) = a(t)vn(t) vn(t) =
v(t)

vmax
(4.4)

Based on subjective perception empirical data of velocity and acceleration (from a Japanese
automaker), the perceived risk deviation analysis is proposed to extract the obviously uncom-
fortable manoeuvres. The threshold function of perceived comfort is constructed as shown in
Eq. (4.5)1, where aw is the empirical thresholds, and where a1, a2, a3 are the maximum thresh-
olds of subjective comfort in different velocity ranges. The comfort deviation value Pd(t) is the
difference between Pn(t) and Pw(t), the calculation result is shown in Eq. (4.5)2. If Pd(t)  0,
it means that the vehicle manoeuvre is in the acceptable range. If Pd(t) < 0, it means that the
vehicle performs obviously uncomfortable manoeuvres. The smaller the value, the more uncom-
fortably the driver feels. The calculation result in the time domain is shown in Fig. 6b, there
are three obviously uncomfortable manoeuvres corresponding to Fig. 3
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pw(v) = awvn(t) aw =















a1 for 0 < vt ¬ 40

a2 for 40 < vt ¬ 80

a3 for 80 < vt ¬ 120

pd(t) = pn(t)− pw(t)

(4.5)

Fig. 6. Perceived risk and comfort deviations (time domain): (a) perceived risk index,
(b) perceived risk deviation

Fig. 7. Perceived risk and comfort deviations (velocity domain): (a) perceived risk index,
(b) comfort deviation analysis

Perceived risk and comfort deviation analysis based on the velocity domain is calculated and
plotted by extracting the maximum acceleration value of each velocity range, as shown in Fig. 7a
and 7b. It can be seen from the figure that there are obviously uncomfortable manoeuvres in
the velocity range of 40-60 km/h, which verifies consistency of the design scenario (aggressive
acceleration and deceleration velocity range). The intensity of uncomfortable working condi-
tions can be reduced by adjusting the vehicle-following sensitivity without affecting the traffic
efficiency.
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5. Intelligent identification of uncomfortable manoeuvres

5.1. Data feature extraction

In vehicle-following tests, the acceleration and deceleration manoeuvres causing physical
discomfort and tension are extracted based on subjective feelings. The overlapping of these
scenarios in terms of acceleration curves (gray curves) is shown in Fig. 8. We can find that the
process basically belongs to V -shaped acceleration curve which including deceleration increase
and decrease phases. Through analysis of the key influencing factors, the features of the simplified
manoeuvre model are defined, as shown in Fig. 8.

Fig. 8. Uncomfortable manoeuvre model feature design

Equation (5.1) enable calculation of these feature values, where tr is the minimum value
in the data segment, kr and kd are deceleration increasing and decreasing slopes respectively,
kc is the changing range between kr and kd, hu is the growth range between the end point and
minimum value, hd is the reduction range between the starting point and minimum value. These
feature values constitute the unit feature matrix Si of the extracted data segment

tri = min(sequencei) kri =
(tri − sequencei(1))

td − tamin

kdi =
(sequencei(200) − tri)

td − tamin
kci = kdi − kri

hui = tri − sequencei(1) hdi = sequencei(200) − tri

(5.1)

and

Si = [tri, kri, kdi, kci, hui, hdi]
T (5.2)

In the experiment, uniform size data sets were used as units for data training and calculation
of an artificial intelligence algorithm. sequencei is the data set generated by sequential data
extraction in the chronological order. Each data set consists of i-th to (i+m)-th samples in the
whole scenario data, as shown in Fig. 9. The unit feature matrixes constitute the total feature
matrix Dh, Eq. (5.3)1. In Eq. (5.3)2, Yh is the judgment matrix corresponding to the matrix Dh
by the column

Dh = [S1, S2, . . . , Sn1] Yh = [y1, y2, . . . , yn1] (5.3)

[0, 1]′ and [1, 0]′ represent these data fragments for uncomfortable and comfortable manoeuvres
respectively, shown as

Yi =

{

[1, 0]T uncomfortable

[0, 0]T acceptable
(5.4)
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In subsequent calculations, Yi(1, 1) denotes the judgment result,Dt is the test data of the formal
experiment, as shown in the matrix

Dt = [S1, S2, . . . , Sn2] (5.5)

Fig. 9. Sequence data extraction

5.2. Algorithm design and training

Due to the fact that the quantitative equation for feature values cannot be established
scientifically to identify such uncomfortable manoeuvres, the extracted features data is used for
an artificial intelligence training algorithm to generate a feature network for automatic data
analysis and recognition. In this paper, the identification network is generated by a machine
learning algorithm of pattern recognition. Pattern recognition networks are feedforward networks
that can be trained to classify inputs according to known target classes. These are two-layer feed-
-forward frameworks with sigmoid hidden and softmax output neurons, as shown in Fig. 10. The
network is trained with scaled conjugate gradient backpropagation. The network attributes and
parameter settings are shown in Table 2. The total number of training samples is 68 groups,
38 of which are uncomfortable manoeuvres and 30 groups are acceptable manoeuvres (Archer
and Wang, 2010; Zhao, 2006; Liu et al., 2008).

Fig. 10. Pattern recognition neural network

Thw summation function is Eq. (5.6), where ω and b denote the weight and bias of the
neuron, respectively. The inputs matrix S = {Si} is a set of values for which we need to predict
the output value

z =
6
∑

j=1

ωjSi(j) + b (5.6)

The hidden layer adopts the sigmoid function as

a(z) =
1

1 + e−z
(5.7)
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Table 2. Algorithm and parameter setting

Parameter Setting

Trained function scaled conjugate gradient

Cost function cross-entropy function

Hidden layer size 10

Maximum training times 1000

Training set ratio 75%

Validation set ratio 15%

Test set ratio 15%

The hidden layer adopts the softmax function. The softmax value calculation of the element
in the group is shown in Eq. (5.8), where i is the number of elements, vi is the output value of
the i-th node and c is the number of output samples

Softmax (vi) =
evi

∑c
c=1 e

vj
(5.8)

The cost function adopts cross-entropy function shown in Eq. (5.9), where y denotes the
corresponding actual value in the original data and m denotes the number of sample groups,
gi denotes the output value calculated through the node, hθ is the hypothesis function to estimate
the result

C = −
1

m

(

m
∑

i=1

y(i) log hθ(gi) + (1− y(i)) log[1− hθ(gi)]

)

(5.9)

In this paper, we use MATLAB as the algorithm training software. Through programming
and multiple iterative calculations, the result shows that the number of iterations is 45 and
the best validation performance is 0.03 at epoch 39. Figures 11 and 12 are the training result
and accuracy of the generated net. The confusion matrix is Fig. 11, it denotes that accuracy of
prediction results of the trained network is very high (error rate less than 2%). In Fig. 12, the
ROC curve is very close to the upper left corner and almost at right angles, which denotes that
the classifier network works well.
The generated network is expressed as I0, and the calculation is defined by Eq. (5.10)1. For

convenience of the expression, the output only extracts the first row of the result matrix (the
identification result is 1 or 0), the calculation formula is expressed by Eq. (5.10)2

I0 = net(Dt) I = I0(1, j) (5.10)

5.3. Error filtering algorithm design and calculation

In order to eliminate the unreasonable results caused by small amplitude uncomfortable
manoeuvres, the filter function is designed for output data optimization. The function is shown
in Eq. (5.11), the unit sampling data ranges e = 20 (i.e. 10 s). The average value of the data
is considered valid when it is greater than 0.9, otherwise it is 0. In the formula, i ∈ [1, n2 − e],
and the final automatic identification result is shown in Fig. 13. It can be seen from the figure
that the three V -shaped acceleration waves with large amplitude changes are determined as
uncomfortable manoeuvres for which the calculated result in the matrix isW (i) = 1. In addition,
these identified ranges correspond to driver’s subjective feeling of uncomfort and tension

W (i) =











I(i) for 1
e

i+e
∑

k=i
I(k) > 0.9

0 for 1
e

∑i+e
k=i I(k) ¬ 0.9

(5.11)
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Fig. 11. Confusion matrix

6. Conclusions

This paper is a research on intelligent driving comfort and intelligent identification of uncom-
fortable manoeuvres. An innovative analysis method is proposed to show system calibration
under typical city vehicle-following scenarios. In addition, a neural network is trained for in-
telligent identification of uncomfortable manoeuvres. The study in the paper has the following
innovations and conclusions:

• Through data reconstruction, the control performance of dynamic acceleration is presented
through a 3-dimensional distribution map. The result shows that the discomfort condition
mainly occurs in the aggressive braking scenario of the leading vehicle. A suggestion for the
improvement is that the control strategy of the host vehicle can more predictably identify
the dynamics of the leading vehicle based on the velocity variation rate.

• Acceleration energy and power analysis present uncomfortable accumulated energy and
intensity. The result shows ideal distribution characteristics reflecting the safety tendency
and reasonable braking intensity distribution of the control strategy.

• Through combination of subjective feelings and an objective method, the driver’s per-
ceived risk and its deviation are dynamically analyzed. The braking conditions bring great
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Fig. 12. ROC

Fig. 13. Extraction of uncomfortable manoeuvres
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perceived risks to drivers and passengers, and the braking process can be smoothed by
braking in advance or increasing the following distance.

• The high accuracy identification network of uncomfortable manoeuvres is trained by an
artificial intelligence algorithm. Through subjective verification, it can accurately identify
uncomfortable working conditions. These preliminary results will provide new ideas and
methods for the comfort research of intelligent driving vehicles, and the exploration of
design evaluation of the human-machine system adaptability is carried out.
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